Analysis of nearly identical earthquakes that happened years apart proves that Earth's moon-size inner core rotates faster than the rest of the planet, a team of geophysicists report today.
The finding is "unambiguous" and should settle a nearly decadelong debate over the matter, said Xiaodong Song, a geophysicist at the University of Illinois at Urbana-Champaign.
Earth's iron core consists of a solid inner core about 1,500 miles (2,400 kilometers) in diameter—about the size of the moon—and a fluid outer core measures about 4,200 miles (7,000 kilometers) across. The inner core plays an important role in the geodynamo—the process that generates Earth's magnetic field. Understanding how the inner core moves will allow scientists to better understand the geodynamo.
Song and Paul Richards of the Lamont-Doherty Earth Observatory in Palisades, New York, presented in 1996 observation data for the so-called super-rotation of the inner core.
The original finding was based on analysis of three decades of seismological records. Scientists have both confirmed and questioned the theory in the intervening years. Some scientists said the original finding could be a flaw in the data.
The newest research is reported in tomorrow's issue of the journal Science.
Kenneth Creager is a seismologist at the University of Washington in Seattle. He commented in an accompanying opinion piece that the research "removes any lingering doubt as to whether the inner core is rotating at a different rate than the mantle
Identical Earthquakes Song, Richards, and colleagues' evidence is based on side-by-side comparisons of seismic waves from 18 pairs of earthquakes that were nearly identical in location and magnitude. They differed only in date, and such similarity diminishes the margin for error.
The temblors occurred in the South Sandwich Islands near Antarctica and were detected by seismometers near Fairbanks, Alaska. On their pole-to-pole journey, the seismic waves traveled through the Earth, some through the inner core.
"Essentially, the waves that traveled through the area outside the inner core—the crust, the mantle, the outer core—are all the same," Song said. "Only when they travel through the inner core are they different."
There were two main differences between the inner and outer waves. First, and most prominently, the waves passing through the inner core moved faster in a systematic pattern over time. For example, waves passing through the inner core from a 2003 event arrived one-tenth of a second faster than those from a nearly identical 1993 event.
In addition, the waves themselves change in shape over time—another sign of motion in the inner core, the researchers note. "With those observations we can conclude that the changes must be from the inner core, and the reason we see these changes is because the inner core is moving," Song said.
Core Interactions
Scientists attribute the change in travel time to how the waves interact with the inner core. Research suggests that the crystals in most of the iron core are structured in a grain, as in wood. Waves speed up or slow down depending on how they pass through the grain. Song and colleagues believe that the "grain" has been steadily alligning itself in a way that provides a quicker path between the South Sandwich Islands and Alaska.
Their calculations suggest the inner core rotates at a rate of 0.3 to 0.5 degree per year faster than the mantle and crust. That's about 50,000 times faster than the tectonic plates move on the planet's surface.
"So, 0.3 to 0.5 degrees may not sound like so much, but within the solid Earth system, that is pretty fast," Song said.
The lumpiness of the inner core is thought to "scatter" the waves in different patterns, Song added.