Manu | Date: Tuesday, 16-February-2021, 8:28 AM | Message # 1 |
--dragon lord--
Group: undead
Messages: 13927
Status: Offline
| by Jonathan O'Callaghan
Identical twins have nothing on black holes. Twins may grow from the same genetic blueprints, but they can differ in a thousand ways — from temperament to hairstyle. Black holes, according to Albert Einstein’s theory of gravity, can have just three characteristics — mass, spin and charge. If those values are the same for any two black holes, it is impossible to discern one twin from the other. Black holes, they say, have no hair.
“In classical general relativity, they would be exactly identical,” said Paul Chesler, a theoretical physicist at Harvard University. “You can’t tell the difference.”
Yet scientists have begun to wonder if the “no-hair theorem” is strictly true. In 2012, a mathematician named Stefanos Aretakis — then at the University of Cambridge and now at the University of Toronto — suggested that some black holes might have instabilities on their event horizons. These instabilities would effectively give some regions of a black hole’s horizon a stronger gravitational pull than others. That would make otherwise identical black holes distinguishable.
However, his equations only showed that this was possible for so-called extremal black holes — ones that have a maximum value possible for either their mass, spin or charge. And as far as we know, “these black holes cannot exist, at least exactly, in nature,” said Chesler.
But what if you had a near-extremal black hole, one that approached these extreme values but didn’t quite reach them? Such a black hole should be able to exist, at least in theory. Could it have detectable violations of the no-hair theorem?
A paper published late last month shows that it could. Moreover, this hair could be detected by gravitational wave observatories.
Read more/full aricle/source - https://www.quantamagazine.org/in-viol....0210211
|
|
| |